汤楠博士
汤楠实验室研究集中在利用小鼠肺脏作为模型,揭示胚胎发育和组织再生的机理。展示首次成功标记的小鼠肺泡I型细胞。
- 基本信息
- 教育经历
- 工作经历
- 研究概述
- 发表文章
汤楠 博士
北京生命科学研究所高级研究员
Nan Tang, Ph.D. Associate Investigator, NIBS, Beijing,China
Phone:86-10-80726688
Fax: 86-10-80726689
E-mail:tangnan AT nibs DOT ac DOT cn
教育经历
Education
2005年 美国加州大学圣地亚哥分校,博士
Ph. D.,
1993年 西安交通大学,医学学士
M.D.,
工作经历
Professional Experience
2019年- 北京生命科学研究所高级研究员
2012-2019 北京生命科学研究所研究员
Assistant Investigator, National Institute of Biological Sciences,
2006-2012 美国加州大学旧金山分校解剖发育生物学系,博士后
Postdoctoral Fellow, Dept. of Anatomy and Program in Developmental Biology, University of California, San Francisco, CA, USA
2000-2005 美国加州大学圣地亚哥分校分子病理学系,博士研究生
Graduate Research Assistant in Molecular Pathology,
1998-2000 美国加州大学圣地亚哥分校细胞及发育生物学系,博士后研究员
Postdoctoral Researcher, Cell and Developmental Biology, Division of Biological Sciences,
研究概述
肺,是陆生动物与外界进行气体交换的场所,其对于生命的重要性可窥一斑,而其气体交换功能由肺泡介导完成。成人肺的3-5亿个肺泡,每小时完成450升气体交换,诠释了肺脏最基本的结构与功能,也为重症、难治性肺脏疾病的发生、进展埋下了伏笔。特发性肺纤维化、慢性阻塞性肺病、肺癌等无一不是严重威胁人类健康且几乎无药可治的重大临床问题。
于是两个基础性问题引起了我们强烈的研究兴趣:1)我们精妙的肺脏受损伤后是如何修复的?2)重症、难治性肺脏疾病的基础病理环节及治疗关键点在哪里?基于此,我们确立了明确的研究方向并进行了持续的探索:
1. 探究肺再生的机制。肺泡上皮细胞包括肺泡干细胞和主管气体交换的肺泡上皮一型细胞。我们通过建立的肺再生小鼠模型,结合小鼠遗传学、小鼠活体动态成像系统、肺泡干细胞体外三维培养技术和单细胞测序等技术来研究在肺损伤修复过程中肺泡干细胞增殖分化的机制。同时我们对国际上较少有人涉足的肺泡一型细胞进行了深入研究,初步揭示了其在再生过程中的功能及分子机制,并进一步探索其在介导肺泡免疫反应中的作用。
2. 探索肺部常见疾病如:肺癌、特发性肺纤维化、慢性阻塞性肺病等的发病机制和生物靶点,并进行针对性药物研发。我们实验室通过建立的各种肺疾病小鼠模型,结合大量正常人和病人肺组织样本,通过测序、细胞、分子、生化技术等,找到相关的突变、发病机制和治疗靶点。目前我们正在研发针对分子靶点的药物,期望通过恢复和促进肺泡再生功能,以及加速肺功能的修复来达到治疗多种肺疾病的目的。
Publications
1. Wang YX, Bin EN, Yuan J, Huang M, Chen JY, Tang N*. (2023) Aberrant differentiation of epithelial progenitors is accompanied by a hypoxic microenvironment in the paraquat-injured human lung. Cell Discov. 9(1):98.
2. Wang Z, Wei DD, Bin EN, Li J, Jiang KW, Lv TT, Mao XX, Wang FC, Dai HP, Tang N*. (2023) Enhanced glycolysis-mediated energy production in alveolar stem cells is required for alveolar regeneration. Cell Stem Cell. 30(8):1028-1042.e7.
3. Fu SL, Wang YX, Bin EN, Huang HW, Wang FC, Tang N*. (2023) c-JUN-mediated transcriptional responses in lymphatic endothelial cells are required for lung fluid clearance at birth. Proc Natl Acad Sci U S A. 120(2): e2215449120.
4. Li J, Tang N*. (2023) Empowering human lung development. Cell Stem Cell. 30(1): 5-6.
5. Shen HY, Huang X, Zhao YH, Wu DM, Xue KL, Yao JF, Wang YS, Tang N, Qiu YF (2022) The Hippo pathway links adipocyte plasticity to adipose tissue fibrosis. Nat Commun. 13(1): 6030.
6. Wang YX, Tang N*. (2021) The diversity of adult lung epithelial stem cells and their niche in homeostasis and regeneration. Sci China Life Sci. 64(12):2045-2059.
7. Li J, Tang N*. (2021) Alveolar stem cell in lung development and regrowth. ERS Monograph on Lung Stem Cells in Development, Health and Disease. 91:17-30.
8. Wu HJ, Tang N*. (2021) Stem cells in pulmonary alveolar regeneration. Development. 148(2): Dev193458.
9. Li H, Liu L, Zhang DY, Xu JY, Dai HP, Tang N, Su X, Cao B. (2020) SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 395(10235): 1517-1520.
10. Chen JY, Wu HJ, Yu YY, Tang N*. (2020) Pulmonary alveolar regeneration in adult COVID-19 patients. Cell Res. 30:708-710.
11. Wu HJ, Yu YY, Huang HW, Hu YC, Fu SL, Wang Z, Shi MT, Zhao X, Yuan J, Li J, Yang XY, Bin EN, Wei D, Zhang HB, Zhang J, Yang C, Cai T, Dai HP, Chen JY, Tang N*. (2020) Progressive pulmonary fibrosis is caused by sustained elevated mechanical tension on alveolar stem cells. Cell. 180(1):107-121. e17.
12. Chu QQ, Yao CF, Qi XB, Stripp BR, Tang N*. (2019) STK11 is required for the normal program of ciliated cell differentiation in airways. Cell Discov. 5:36.
13. Van Soldt BJ, Qian J, Li J, Tang N, Lu J, Cardoso WV. (2019) Yap and its subcellular localization have distinct compartment-specific roles in the developing lung. Development. 146(9).
14. Li J, Tang N*. (2018) May the force be with you. Dev Cell. 47(6):673-674.
15. Jiang K, Tang Z, Li J, Wang F, Tang N*. (2018) Anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification. Sci Rep. 8(1):14344.
16. Liu L, Lu J, Li X, Wu A, Wu Q, Zhao M, Tang N, Song H. (2018) The LIS1/NDE1 complex is essential for FGF signaling by regulating FGF receptor intracellular trafficking. Cell Rep. 22(12):3277-3291.
17. Lin R, Feng Q, Li P, Zhou P, Wang R, Liu Z, Wang Z, Qi XB, Tang N, Shao F, Luo MM. (2018) A hybridization-chain-reaction-based method for amplifying immunosignals. Nat Methods. 15(4):275-278.
18. Wang Y, Tang Z, Huang H, Li J, Wang Z, Yu Y, Zhang C, Li J, Dai H, Wang F, Cai T, Tang N*. (2018) Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate. Proc Natl Acad Sci USA. 115(10):2407-2412.
19. Li J, Wang Z, Chu QQ, Jiang KW, Li J, Tang N*. (2018) The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev Cell. 44(3):297-312.
20. Tang Z, Hu YC, Wang Z, Jiang KW, Zhan C, Marshall WF, Tang N*. (2018) Mechanical forces program the orientation of cell division during airway tube morphogenesis. Dev Cell. 44(3):313-325.
21. Wang Z, Tang N*. (2017) The LUNGe to model alveolar lung diseases in a dish. Cell Stem Cell. 21(4): 413-414.
22. Liu Z, Fu SL, Tang N*. (2017) A standardized method for measuring internal lung surface area via mouse pneumonectomy and prosthesis implantation. J Vis Exp. (125):56114.
23. Liu Z, Wu HJ, Jiang KW, Wang YJ, Zhang WJ, Chu QQ, Li J, Huang HW, Cai T, Ji HB, Yang C, Tang N*. (2016) MAPK-mediated YAP activation controls mechanical-tension-induced pulmonary alveolar regeneration. Cell Rep. 16(7):1810-9.
24. Tang N, and Marshall WF. (2013) Computational analysis of the spatial distribution of mitotic spindle angles in mouse developing airway. Proc. SPIE. 8593.
25. Tang N, and Marshall WF. (2012) Centrosome positioning in vertebrate development. J Cell Sci. 125:4951-4961.
26. Tang N, Marshall WF, McMahon M, Metzger RJ, Martin GR. (2011) Control of mitotic spindle angle by the RAS-regulated ERK1/2 Pathway determines lung tube shape. Science. 333:342-5.
27. Zheng B, Tang T, Tang N, Kudlicka K, Ohtsubo K, Ma P, Marth JD, Farquhar MG, Lehtonen E. (2006) Essential role of RGF-PX1/sorting nexin 13 in mouse development and regulation of endocytosis dynamics. Proc Natl Acad Sci USA. 103(45):16776-81.
28. Tang N, Mack F, Haase VH, Simon MC and Johnson RS. (2006) pVHL function is essential for endothelial extracellular matrix deposition. Mol Cell Biol. 26(7):2519-30.
29. Mendoza MC, Du F, Iranfar N, Tang N, Ma H, Loomis WF, Firtel RA. (2005) Loss of SMEK, a novel, conserved protein, suppresses mek1 null cell polarity, chemotaxis and gene expression defects. Mol Cell Biol. 25(17):7839-53.
30. Tang N, Wang LC, Esko J, Giodano F, Huang Y, Gerber HP, Ferrara N and Johnson RS. (2004) Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 6(5):485-95.